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Abstract 
A 35-year record of water quality sampling in the Squam Lakes in New Hampshire was analyzed 
for spatial and temporal characteristics. Spatial similarities among water quality parameters from 
16 monitoring sites were resolved into 5 clusters by the hierarchical Ward Linkage method – 
Inner/outer Squaw Cove, Inner Dog Cove, Little Squam Lake and Southern stations, NE 
Stations, and Western Stations. Cluster analysis revealed strong spatial discrimination of groups 
related to their inherent water quality characteristics. These zones were, for the most part, 
geographically clustered as well. Time series analysis showed small increases in chlorophyll-a 
over the 35-year period of record. Chlorophyll-a concentrations (Chl-a) decreased at four 
monitoring stations but increased at four (p<0.05). Due to this spatial variability, Chl-a 
concentrations cannot be said to have significantly increased or decreased lakewide in Squam 
Lake. However, the Chl-a concentrations in Little Squam Lake exhibited increases of .024 and 
.057 µg L-1 yr-1 over the period of record. Spectral analysis of water quality in the Squam Lakes 
helped to characterize groups of monitoring stations. The group of Little Squam Lake and 
Southern stations showed high levels of variability around 20 years in Chl-a and Secchi Depth 
(SD) - a cycle observed in the nearby river discharge datasets, a smaller level of variability 
around 10 years for both parameters, and relatively high variability on the 20+ year time scale 
for Chl-a. At the Northeastern group of stations, SD and Chl-a varied on completely different 
time scales; Chl-a variability was dominated by the 15-20 year time-scale, but the same time-
scale had the least spectral power in the Secchi depth periodogram.  For the Western group of 
stations, high variability at 10 years was observed for all water quality parameters, along with a 
high level of low-frequency variability. 
 
 
Introduction 

Environmental monitoring programs are essential for our understanding and management of 
ecosystems. Before we can recognize and address environmental changes, some idea of baseline 
and natural variability must be established against which to evaluate deviations. Along with 
temporal changes, it is important to understand the spatial patterns of water quality in ecosystems 
in order to direct management efforts. Lake monitoring efforts are often limited to a singular site 
at the deepest point. It has been suggested that “the number of sampling stations should be the 
nearest whole number to the log10 of the area of the lake in km2…For lakes with irregular 
boundaries, it is advisable to conduct preliminary investigations to determine whether and where 
differences in water quality occur before deciding on the number of stations to establish” 
(UNEP/WHO 1996). The USGS makes similar recommendations, “Sufficient measurement 
surveys of field parameters must be made to provide adequate confidence that the magnitude and 
spatial distribution of variability are understood” (Wagner et al. 2006).  

Lakes with irregular basins have larger ‘development of shore line’ factors (Hutchinson 
1957), the ratio of the shoreline length relative to the circumference of a circle, than more 
circular/oval lakes. An irregular lake will have more perimeter to contribute nutrients via runoff, 
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both natural and anthropogenic, than a round lake. In addition, the distribution of allochthonous 
nutrient inputs is often spatially heterogeneous due to variability in land use and subwatershed 
area, being higher in the vicinity of inlets and lake shores, than further away. Finally, irregular 
lakes are more hydrologically compartmentalized by geomorphology and bathymetry, making 
water quality more spatially heterogeneous than in round lakes (Van Nes & Scheffer 2005, 
Janssen et al. 2014). The lower internal connectivity (horizontal exchange) of irregular lakes 
restricts mixing and allows both physical and biogeochemical processes to establish and maintain 
heterogeneity in different lake compartments (Van Nes & Scheffer 2005). For these reasons, it is 
difficult to characterize irregular lakes according to standard indicators that assume homogeneity 
- overall lake trophic status is one example. 

To understand the factors influencing nutrient biogeochemistry in irregular lake, it is useful 
to define spatially distinct regions that are relatively homogenous in characteristics and processes 
(e.g. embayments, beaches,open areas, etc). It is also important to be able to objectively group 
stations of similar water quality to remove bias. In the first part, we apply hierarchical cluster 
analysis to a 35-year, multivariable data set to characterize the spatial distribution of 
eutrophication indicators in a northern New England oligotrophic lake, specifically the Squam 
Lakes in New Hampshire (NH), USA. This approach objectively classifies sampling stations into 
regions with similar water quality for the period of record. Water quality at a specific site is the 
result of the interaction of a variety of driving forces, including freshwater inputs/outputs, sinks, 
and internal cycling. It is reasonable to assume that contiguous groups of stations with similar 
water quality are the result of comparable interactions, hence we call these regions zones of 
similar influence (ZSI, Boyer et al. 1997). The utility of this approach for further analysis and 
new hypothesis development are discussed. 

The second part of this project concerns the determination of temporal trends in water quality 
indicators. One of the primary purposes for conducting long-term monitoring projects is to be 
able to detect trends in the measured variables over time. Most data sets generated during 
surveys and monitoring programs are interpreted using time series, where one of the axes is 
either time or distance. Due to the inherently complex character of natural phenomena, data are 
strongly affected by serial correlation and high variability can mask underlying patterns (trends, 
shifts, cycles, and seasonal variations). A battery of statistical techniques to study time series has 
been developed in the field of electrical signal analysis, economics, and quality control (Box et 
al. 1994; Chatfield 1996; Manson and Lind 1996; Emery and Thomson 2001). However, one 
difference in time series used in engineering and environmental sciences is that the latter rarely 
use data collected at regular intervals, either in time or space. Hence, it is normally necessary to 
perform a pre-treatment of the data sequence before attempting more orthodox statistical tests 
(Sturges 1983; Box et al. 1994; Chatfield 1996; Emery and Thomson 2001). To address these 
concerns we use Mann-Kendall test, LOESS, and spectral analysis to quantify and visualize 
trends.  

Another problem is that climate-related time series usually contain combinations of variables 
measured at different time scales and locations. In the present study we attempt to link 
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biogeochemical descriptors of water quality to external drivers, both natural and anthropogenic, 
using contrasting time series methods. Changes were investigated within the context of global 
and regional climatic stressors such as North Atlantic oscillation (NAO), Atlantic multidecadal 
oscillation (AMO), local rates of precipitation, and variations in freshwater runoff from the 
watershed. 
 
Methods 
Study Site 

The Squam Lakes (Squam Lake and Little Squam Lake) are two conjoined lakes in central 
NH, USA connected by the Squam Channel, a short, natural channel (Fig. 1). The lakes sit at 
approximately 560 ft. (170 m) above mean sea level and their water levels are controlled by a 
dam on the Squam River, one mile downstream of the Little Squam Lake outflow (SLA 2002). 
The surface area of Squam Lake is 2,737.7 hectares with an average depth of 11 m and a 
maximum depth of 29.9 m. Squam Lake has an irregular shoreline, with 20 coves, 3 bays, 30 
islands, and 13 open-water reefs (SLA 2002). The bathymetry of Squam Lake is irregular with 
many shallow sills which partition the lake into ~18 basins. Little Squam Lake, located 
downstream of Squam Lake, has a surface area of 165.1 hectares, an average depth of 7 m, and a 

maximum depth of 25.6 m. The Shoreline Development Index, 𝐷 = 𝐿/(2√𝜋𝐴), for the 
combined Squam Lakes is 5.46, a large deviation from 1.0 of a circle lake. The Shoreline 
Density, 𝐷 = 𝐿/𝐴, (Osgood 2005) is 35.9 m ha-1; more than fivefold the shoreline of a circular 
lake of same area (DSL = 6.58 m ha-1). 

The Squam Lakes watershed (Fig. 1) covers 171 km2, 81% of which is forested. Land use in 
the watershed is rural, but with small-to-medium sized population centers. Development around 
the lake mostly consists of seasonal or year-round homes with on-site septic tanks. The western 
watershed area is much larger than that the eastern side and receives more stream drainage. Little 
Squam Lake has moderate-to-heavy development near its shoreline on all sides. The drainage 
basin to lake area ratio is low at 5.9 indicating potentially less impact of the watershed on water 
quality than lakes with higher ratios. The corollary is that the Squam Lakes have a relatively long 
hydraulic residence time of 227 days. A monitoring report (SLA 2002) estimated that 46% of 
water input to the Squam Lakes comes from tributaries distributed among 25 small sub-
watersheds with 31% input from direct precipitation. 
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Figure 1.  Map of Squam Lakes watershed and lake area in New Hampshire USA (inset). Note the 
smaller sub-watershed area along the eastern side of the lake. 

 
Data Description 

The data used in this study is the result of 385 water sampling events in the Squam Lakes 
collected from 1979 to 2014 by the Squam Lakes Association’s network of volunteers in 
conjunction with by the University of New Hampshire Lay Lakes Monitoring Program and NH 
Department of Environmental Services. As frequently as bi-weekly (although often less 
frequently), integrated water samples were collected and analyzed using standard laboratory 
procedures for chlorophyll-a (Chl-a, µg L-1), apparent color (COLOR, CFU), total phosphorus 
(TP, µg-P L-1), and alkalinity (ALK, mg L-1). Concurrent water clarity was measured in situ as 
Secchi depth (SD, m). Except for a few samples from 1990 through 1993, TP and ALK were not 
collected and analyzed until 1994, providing a shorter period of record than the other parameters. 

Of the 22 stations monitored over the period of record, 16 possessed the longest and most 
complete records for analysis for at least one water quality parameter (Fig. 2). Of these, 3 
stations had a 35 year record (1979-2014), 7 stations had records from 1979-2014 with some gap 
years, and 6 stations had records that started either after 1979 and/or ended before 2014. Of the 
variables measured, both Chl-a and SD had the longest and most complete records across 
stations. The monitoring stations were distributed across the lakes along shorelines, in coves, and 
in deeper parts of the lake. Three stations – Inner Squaw Cove, Outer Squaw Cove, and Inner 
Dog Cove – were shallow enough that SD measurements were occasionally limited by station 
depth. 
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Figure 2.  Location and depth of sampling stations used in the analysis. 

 
The annual monitoring season typically begins in late May-early June and ends in late 

August-early September; less than 1% of water quality records were collected between October 1 
and April 30. The semi-regular and seasonal pattern of water sampling result in a discontinuous 
time series that limited the types of statistical analyses available. Although intra-annual trends 
were not analyzed, other insights may be gained by examining the interannual trends in this 
record which spans 35 years. 
 
Data Statistics 

Typically, water quality data are skewed to the left (low concentrations and below detects) 
resulting in non-normal distributions, so it is more appropriate to use the median as the measure 
of central tendency because the mean is inflated by high outliers. In addition to numerical 
summaries, data distributions of water quality variables are reported as box-and-whiskers plots. 
The box-and-whisker plot is a powerful visual statistic as it shows the median, range, and 
distribution as well as serving as a graphical, nonparametric ANOVA. The center horizontal line 
of the box is the median of the data, the top and bottom of the box are the 25th and 75th 
percentiles (quartiles), and the ends of the whiskers are the 5th and 95th percentiles. The notch in 
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the box is the 95% confidence interval of the median. When notches between boxes do not 
overlap, the medians may be considered significantly different. Outliers (<5th and >95th 
percentiles) were excluded from the graphs to reduce visual compression. Differences in 
variables were also tested between groups using the Mann-Whitney U test (comparable to a t-
test) and among groups by the Kruskall-Wallace test (ANOVA) with significance set at p<0.05. 
 
Spatial Patterns in Water Quality 

It is useful to define sub-regions of ecosystems in order to understand the roles of various 
nutrient sources, sinks, and processes. Even a modest water quality monitoring program can 
generate a daunting amount of data (~30,000 points, this study). Because we were interested in 
understanding the spatial patterns of water quality in Squam Lakes, we wanted to reduce the data 
matrix into fewer elements. To identify any spatial similarities or differences among stations, 
water quality variables from 16 stations were clustered using the hierarchical Ward Linkage 
method (SPSS Statistics). The input variables used were Chl-a, SD, and COLOR. The actual data 
used in the cluster model were composed of statistical distribution characteristics for each 
variable – the range, median, median absolute deviation, interquartile range, and skewness. 
Although the TP data had shorter periods of record than other variables, we thought it too 
important to leave out, therefore, by including TP, we used a shorter but more robust dataset to 
develop spatial clusters. The results of this analysis were clusters of stations with similar water 
quality characteristics.  
 
Time Series Analysis 

Least squares, linear regression as a method for measuring change over time is useful for 
variables that change at a continuous rate. The simplicity of this method makes it appealing to 
those who are tracking water quality, but time series dominated by non-linear drivers may be 
skewed by endmember conditions. Therefore, we used the nonparametric Mann-Kendall Test 
(Minitab) on the annual median of variables for the time series. The Mann-Kendall Test is used 
to detect monotonic trends in environmental, climate, and hydrological data without the 
requirement that the measurements be normally distributed or that the trend be linear. 

For external drivers such as precipitation which respond in a cyclical manner, the slope of a 
best-fit line may be skewed in either direction depending on whether the time series starts and/or 
ends in a trough or a crest on the sinusoidal curve. For cycles with longer frequencies relative to 
the period of record, the best-fit line is more sensitive to this effect. To uncover a long-term trend 
in a time series, any cyclical components of the time series should be identified. There may be 
multiple cycles of varying frequencies in the water quality datasets.  

Cross-spectral analysis has been applied in other scientific fields to investigate 
simultaneously the relationship and corresponding time lags between two stationary time series 
in the frequency domain. In the Squam Lakes station time series, some dominant cycles may be 
apparent by eye. These cycles may be identified through spectral analysis – computing the 
sinusoids which best fit a time series. 
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Spectral analysis was performed to identify interannual cycles in each water quality 
parameter at each station and for each group of stations, grouped using the forementioned spatial 
clustering. Examining the similarities and differences in cycles at the station-level might identify 
individual stations whose water quality is responding to different driving factors. Examining 
these similarities and differences at the cluster-level might help identify the influential drivers for 
regional and even lake-wide water quality. 

Least-squares spectral analysis (LSSA) is the process of fitting sinusoids to time series data 
to create the best fit based on least squares. While some spectral analysis methods require a 
continuous or regularly-sampled dataset, LSSA is useful for discontinuous time series with 
irregular gaps. To weight each year and each station equally, LSSA was performed on time 
series of the annual median values for each water quality parameter rather than on time series of 
every sampling event. Some years and stations would otherwise be given more weight because 
there were irregularities in sampling frequency and length of sampling seasons between 
monitoring stations and between years within a stations' datasets. Furthermore, fitting sinusoids 
to time series that include every sampling event would identify higher-frequency intra-annual 
trends that would distract from the interannual trends this study seeks to examine. 

The dataset was sorted by water quality parameter and then by station and by group of 
stations for the spectral analysis. The annual median values of each water quality parameter at 
each station and group of stations was calculated and prepared for spectral analysis as time series 
with one data point per year. No interpolation or gap-filling was performed, as would be done for 
spectral analyses that required a continuous or regular time series. Any gaps in the time series 
were gaps of one or more years, rather than gaps of irregular frequency and length. 
 
Relationship to Drivers 

As proxies for runoff, precipitation and streamflow time series in the region were analyzed to 
examine cyclical patterns that may drive water quality in the Squam Lakes. The nearest complete 
precipitation dataset, 1979-2014, was from the Concord Municipal airport, 37 miles from the 
center of Squam Lake. The nearest river gauges with complete streamflow records for this time 
period were on the Pemigewasset River in Plymouth, NH, on the Smith River in Bristol, NH, and 
on the Winnipesaukee River in Tilton, NH – 8, 16, and 21 miles from the center of Squam Lake, 
respectively. The Pemigewasset-Plymouth gauge has a drainage area of 1,611 km2, the 
Winnipesaukee-Tilton gauge has a drainage area of 1,220 km2, and the Smith River has a 
drainage area of 223 km2. Only the 1979-2014 data for these precipitation and streamflow time 
series were used in the spectral analysis to avoid identifying any interannual cycles that occurred 
prior to 1979 but did not persist after 1979. 
 
Results 
Overall Water Quality of Squam Lakes 

Summary statistics for all water quality variables from for “summer” sampling events (June-
Sep.) for the Squam Lakes exhibited very good water quality (Fig. 3) with median SD of 7.1 m, 
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Chl-a of 1.9 ppb, COLOR of 9.4 CPU, TP of 6.5 ppb, and ALK of 6.2 ppm. Difference between 
lakes were significant but very minor. Little Squam had higher SD (p=0.0119) but lower 
COLOR (p=0.0007), TP (p=0.0001), and ALK (p=0.0001) than Squam. There was no significant 
difference in Chl-a between lakes. From this data, the Squam Lakes are considered oligotrophic 
water bodies. 
 

 
Figure 3. Box and whisker plot of SD (m), Chl-a (ppb), COLOR (CPU), TP (ppb), and ALK (ppm) by 
lake. 

 
Spatial Trends 

The clustering approach produced an array of rescaled distance values between each of the 
monitoring stations. Plotting these values using a dendrogram (Fig. 4) illustrates which stations 
are most similar to each other. Clustering the monitoring stations based their statistical "distance" 
is rather subjective. Delineating groups requires decisions about how many groups there should 
be and what statistical distance is "significant." We chose to group stations into 5 clusters based 
on natural breaks in the dendrogram. The monitoring stations may also be combined into clusters 
using a Ward's distance of 5, which creates 7 groups. In this clustering scheme, Inner Squaw 
Cove would separate from Outer Squaw Cove, and Cotton Cove and Sturtevant Bay would 
separate from Dog Cove and the Little Squam stations. Using a Ward's distance of 13 would 
consolidate 13 stations; the Western, Northeastern, and Little Squam & Southern stations, which 
we felt was too agglomerative, the 5 cluster grouping seemed to provide the best balance.  
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Figure 4.  Results of hierarchical cluster analysis showing station grouping as function of similarity in 
water quality. 

 
Plotting these cluster associations on a map of monitoring stations shows similarities in water 
quality across the lakescape (Fig. 5). 

 
Figure 5.  Sampling stations color coded with previous cluster affiliations. 
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In an effort to understand which water quality variables were most responsible for cluster 
grouping, we plotted box-and-whisker plots of SD, TP, Chl-a, and Color by cluster (Fig. 6). SD 
was an important driver in cluster affiliation as almost all clusters were significantly different for 
that variable.  
 

 
Figure 6.  Box-and-whisker plots of water quality variables as function of cluster showing the 
relationships among variables and importance in cluster determination. 

 
The clusters also allowed us to compare variables not included in the model such as ALK 

which was significantly higher in Squaw Cove group than all the others (not shown). The 
comparison of station cluster water quality was combined in a matrix showing the relative 
differences across the lakes (Table 1). The Squaw Cove sites had poorest water quality due to 
low water clarity and high TP and Chl-a. This area also has high Color as a result of it draining a 
large wetland area. In contrast, stations in northeast region had the best water quality.  
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Table 1.  Matrix of water quality across clusters color coded with red as poorest quality and green as 
best. 

 
Temporal Trends 

Chl-a concentrations have decreased at some monitoring stations while increasing at others 
(Table 2). Due to this spatial variability, Chl-a concentrations cannot be said to have 
significantly increased or decreased lakewide in Squam Lake. Chl-a has increased significantly 
at the two monitoring stations located in Little Squam Lake; increasing at rates of .024 and .057 
µg L-1 yr-1 over the length of their records. Of the three monitoring stations in the southern part 
of Squam Lake - Cotton Cove, Sturtevant Bay, and Dog Cove - which were grouped with the 
Little Squam Lake monitoring stations in the cluster analysis, Chl-a is increasing at one, 
decreasing at another, and remaining steady at the other. 
 

 

Table 2.  Linear trends of water quality parameters Chl-a, SD, and TP at each monitoring station. 

 
Similarly, SD trends across the lakes show no consistent lakewide increase or decrease. 

Within groups of monitoring stations, SD increases at some stations while decreasing at others. 
For TP, the trend towards higher concentrations at two monitoring stations was marginally 
significant. No monitoring stations exhibited a significant decrease in TP concentrations. 
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Spectral Analysis 
Spectral analysis can be a useful statistical tool for identifying variables that drive water 

quality change. Spectral analysis performed on a time series of any suspected driving factor can 
reveal the dominant time periods on which it operates. Time series with similar apices in spectral 
power can indicate that two variables are related. 

There are a number of variables that could drive water quality in a lake, but a few for which 
time series are readily obtainable and that operate in a cyclical manner. Of these, precipitation 
and streamflow – proxies for runoff – potentially have a direct impact on water quality. 
Temperature and atmospheric oscillations have cyclical patterns and may affect water quality, 
although less directly than runoff. Land use in a lake’s watershed could have a direct impact on 
water quality, but land use patterns are difficult to quantify and are unlikely to be cyclical in 
nature. 

The output of the spectral analysis is a power density spectrum which can be plotted on a 
periodogram (Fig. 7). The frequencies, in years, with the greatest power spectral density are the 
frequencies at which the strongest cycles occur. In any periodogram, these apices in power 
spectral density could indicate that there is a strong cycle in the data occurring at that frequency, 
or that the apex occurred at that frequency by chance.  
 

 

Figure 7.  Example of periodogram from spectral analysis on median annual Chl-a records from 
Livermore Cove. 

 
Strong apices that occurred in multiple periodograms were inspected to ensure they were not 

products of the length of record. An apex around 17 years - approximately half the length of 
record - was present in several periodograms, but not many, and is not suspected to be a product 
of the length of record.  

Periodograms of related environmental processes are expected to have similarities. At the 
three river gages nearest to the Squam Lakes, the periodograms show a dominant cycle of 
approximately 25-30 years and a less dominant cycle of approximately 18 years (Fig. 8). 
Discharge is expected to correlate with runoff and thus be related to the water quality of lakes. 
Comparing the periodograms of discharge with those of water quality can indicate whether these 
environmental processes vary on similar time scales. 
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Figure 8.  Periodograms of river discharge at three nearby river gages: Smith River (cyan), 
Pemigewasset River (green), and Winnipesaukee River (magenta). 

 
For SD at the five groups of water quality monitoring stations in the Squam Lakes, there are 

noticeable apices in the periodogram between 5 and 10 years (Fig. 9). These apices share a 
similar characteristic for the four groups of stations with the longest records - they have an apex 
around 5-6 years, although this apex is small at the Little Squam Lake and Southern Squam 
stations, and they have an apex around 9-10 years, although this apex is small for the 
Northeastern stations. The Little Squam Lake and Southern Squam groups have dominant apices 
around 18-20 years, similar to the apices observed around 15-20 years at the three nearby river 
gages.  
 

 

Figure 9.  Periodograms of annual secchi depth at five groups of monitoring stations in the Squam 
Lakes: Squaw Cove (black), Inner Dog Cove (red), Little Squam & Southern (green), Northeastern (blue), 
and Western monitoring stations (yellow). 
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There is little similarity among the periodograms for Chl-a concentrations (Fig. 10). One 
noteworthy feature in these periodograms is the dominant apex around 15-20 years for the 
Northeastern group of stations - a cycle similar to that observed in the three nearby river gages. 
Other noteworthy features of these periodograms are the elevated spectral power near the low-
frequency end of the periodogram. This indicates variability on a time scale close to, or longer 
than, the period of record. However, there is no consistent long-term, linear trend in Chl-a 
concentrations lake-wide. The lack of a consistently dominant cycle in Chl-a among the groups 
of stations suggests that spatial correlation in Chl-a may be weak. 
 

 
Figure 10.  Periodograms of annual Chl-a concentrations at five groups of monitoring stations in the 
Squam Lakes: Squaw Cove (black), Inner Dog Cove (red), Little Squam & Southern (green), 
Northeastern (blue), and Western monitoring stations (yellow). 

 
The relatively short period of record for TP concentrations in the Squam Lakes limits the 

usefulness of spectral analysis. There is a lack of a consistent, dominant cycle among the groups, 
but the relative spectral power on the low-frequency versus high-frequency ends of the 
periodogram can be meaningful (Fig. 11). The Western group and Squaw Cove group of stations 
has more low-frequency than high-frequency variability, indicating that drivers of TP 
concentration operate on scales greater than the length of this record. 
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Figure 11.  Periodograms of annual TP concentrations at five groups of monitoring stations in the Squam 
Lakes: Squaw Cove (black), Inner Dog Cove (red), Little Squam & Southern (green), Northeastern (blue), 
and Western monitoring stations (yellow) 

 
Spectral analysis of water quality at the Squam Lakes groups of stations shows little spatial 

correlation relative to the river discharge datasets. Although there were consistent cycles 
apparent in the river discharge periodograms, there appears to be no cyclical force that drives 
water quality interannually. The spectral analysis performed on the Squam Lakes water quality 
dataset suggests that variability in water quality is concentrated more on the high-frequency end 
of the periodogram than on the low-frequency end, except for a portion of water quality records 
for some groups of stations. This suggests that long-term trends detected in many time series in 
the Squam Lakes dataset should be treated cautiously - a detected trend could be heavily 
influenced by whether the time series began and ended in a period of particularly high or low 
nutrient concentrations or water clarity. 
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